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Abstract. We have analyzed the binding energy (ET
B) of negatively charged excitons (X−) in GaAs, CdTe

and ZnSe quantum wells, which differ considerably in exciton and trion binding energy. Surprisingly, the
ET

B in these materials plotted against quantum well width in Bohr units is found to group around one
universal curve described by a simple phenomenological equation. An illustrative model is suggested to
calculate the binding energy ET

B in a general case, and the results of calculations are in agreement with
experimental data. The ET

B dependencies on the mass ratio and the barriers height are also obtained from
the general model and compared with other calculations available.

PACS. 71.35.Pq Charged excitons (trions) – 71.35.-y Excitons and related phenomena – 71.10.Ca Electron
gas, Fermi gas

1 Introduction

The first consideration of an atomic-like three-body sys-
tem is regarded to Bethe, by whom the attention to the hy-
drogen ion H− has been attracted as early as 1929 [1]. The
existence of negatively (eeh) and positively (ehh) charged
excitons (trions) in semiconductors, being analog to hy-
drogen ions, was predicted by Lampert in 1958 [2]. The
investigation of three-body complexes has a fundamental
importance, particularly in semiconductors, where there
is a possibility to vary parameters in a wide spectrum.
However, the experimental observation of trions in bulk
semiconductors is rather difficult due to their small bind-
ing energies.

The interest in experiment and theory of trions
has grown due to the progress in the semiconductor
heterostructure fabrication. Theoretical calculations per-
formed at the end of the 1980s [3] predicted a considerable
(up to tenfold) increase of the trion binding energy
in quantum well heterostructures compared with bulk
semiconductors. The first experimental observation of neg-
atively charged excitons (X−) has been reported for CdTe-
based quantum wells (QWs) by K. Kheng et al. in 1993 [4].
The trions have also been observed in QWs based on GaAs
and ZnSe semiconductors [5–7]. Nowadays, a large set of
experimental data on X− trion are available for various
types of heterostructures with different parameters.
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The main characteristics of the negatively (or posi-
tively) charged excitons are their binding energies, i.e. the
energy required to separate the trion in a neutral exciton
and an unbound electron (hole). The variation of the bind-
ing energy of X− trion [8–11] and, the similar system, D−
center [12–14] with the QW width have been extensively
studied theoretically. But, most of these calculations are
limited to specific material systems. In order to achieve a
better agreement with experimental data the problem is
treated with a considerable number of fitting parameters.

Our aim is to compare the experimental values of the
trion binding energy (ET

B) in heterostructures based on
different semiconductors with the results of a simple but
universal theoretical model. Such general approach allows
to render the sensitivity of the trion parameters to the
specifics of real heterostructure. In the paper we concen-
trate on the negatively charged exciton, because of the
reliable set of experimental data available. It is important
to note, that, commonly, the effective mass of a hole is
larger than that of an electron. So the X− is constructed
of one heavy particle only, which simplifies the theoretical
consideration.

In Section 2, the experimental data for the trion bind-
ing energy in heterostructures of different material sys-
tems are summarized and discussed. In Section 3, a sim-
ple common model of the trion with a heavy hole in an
ideal QW is proposed and the binding energy dependence
versus the effective well width is variationally calculated.
In Section 4 the deviations between the common model
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Table 1. The original experimental data collected for various semiconductor materials. Note, that for a correct comparison the
binding energy of an “isolated” trion, which is unperturbed by interaction with two-dimensional electron gas, must be taken into
account [15,16]. Therefore, we either select the data for undoped QWs or extrapolate the binding energies in doped structures
to the low-concentration limit. In the latter case the initial values are given in brackets. The data are taken from the following
publications: areference [16], breference [17], creference [18], dreference [15], ereference [19], f reference [20], greference [21],
hreference [22], ireference [23], jreference [24], kreference [25], lunpublished.

ZnSe Lz, Å 29 48 50 64 67 80 95 190 200

ET
B, meV 8.9a 6.6a 5.8a 5.2a 5.3a 4.4a 4.0a 1.4a 2.5b

CdTe Lz, Å 38 50 55 80 100 120 150 260 400 500 600

ET
B, meV 4.4c 3.5c 3.4c 2.9c 2.1d 2.5e 2.2c 1.8c 1.3f 1.2l 1.1f

(2.6) (1.8) (1.5)

GaAs Lz, Å 80 100 200 220 250 300

ET
B, meV 2.1g 2.1h 1.15i 1.1j 0.8k 0.9j

and the experimental data are discussed. The last section
contains the conclusions.

2 Experimental results

Charged excitons in various heterostructures have been
extensively studied during the last decade. Experimental
data of the X− trion binding energy (ET

B) for ZnSe, CdTe
and GaAs quantum wells of various widths (Lz) are col-
lected in Table 1 and illustrated in Figure 1a. One can
clearly follow the increase of the trion binding energy by
decreasing well width for all types of heterostructure ma-
terial.

In order to compare experimental data for different
materials, we replotted them in 3D Bohr units, ET

B/Ry
against Lz/aB, as shown in Figure 1b. In the published
literature there is some dispersion (up to 15%) in the val-
ues of bulk exciton Rydberg and Bohr radius. We took
the averaged ones: 3D exciton Rydberg Ry = 4.2, 10,
20 meV and 3D exciton Bohr radius aB = 140, 67, 40 Å for
GaAs, CdTe and ZnSe respectively. It can be seen that,
in these units, the experimental points group around a
common curve. The relative discrepancy between the re-
sults from different semiconductors does not exceed 20%
for the majority of the data, whereas the binding energy
itself changes by about one order of magnitude. It means,
that the plausible estimation of the trion binding energy
can be obtained with some universal formula. For exam-
ple, the simplest fitting equation found for the quantum
wells of a thicknesses between one aB and 10aB is (shown
in Fig. 1b by a solid line):

ET
B

Ry
≈ 1

3
√

Lz

aB

. (1)

Of course, this equation cannot be used for the limiting
cases Lz → 0 and Lz → ∞. Nevertheless, due to its sim-
plicity, equation (1) can be very useful to predict the trion
binding energies in any semiconductor QW for the wide
range of Lz.
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Fig. 1. The X− trion binding energy ET
B versus the QW width

Lz plotted for different semiconductors: ZnSe by circles, CdTe
by triangles, and GaAs by stars. These data are also collected
in Table 1. (a) The experimental dependencies are plotted in
natural units, i.e. energy and length being expressed in [eV]
and [Å], respectively. (b) The experimental dependencies are
plotted in 3D exciton units. The solid line represents the esti-
mation (1) and the dotted line the calculation for the case of
σ = me/mh = 0.

3 Trion binding energy in ideal
heterostructures

The fact that the experimental results for different semi-
conductors are tightly grouped around one curve seems
to be rather surprising. Indeed, it signifies that the trion
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binding energy in the most common semiconductor QWs
can be easily estimated using only the value of well width
and the parameters of the 3D exciton. However there is
great amount of effects, which are not directly connected
to these parameters but can also influence the trion bind-
ing energy. For example, electron-to-hole mass ratio, com-
plex valence band and polaron effects are quite different
in structures based on GaAs, CdTe and ZnSe, and some of
them like built-in electric field or band offsets even vary
from sample to sample. Nevertheless, the comparison of
the normalized experimental values shown in Figure 1b
does demonstrate that the scattering of the results caused
by the variation of these effects in different semiconductor
samples being relatively small. This implies that either the
effects are neglible or their total contribution to the trion
binding energy accidentally turns out to be the same in
all considered heterostructures.

The simplest way for distinguishing these two cases is
to evolve the common part of the binding energy, which
should be universal for all semiconductors, and the contri-
bution of such “sample-dependent” effects. For this task
one should calculate the trion binding energy based on
the quantum well width and the units of 3D exciton only.
However, most of the available calculations [8–11] are basi-
cally related to the specifics of real heterostructures. Thus,
at first we consider an universal model of the trion, which
later is extended to particular samples. An advantage of
such an approach is that in contrast to previous calcu-
lations the general model may be constructed in a most
simplified and visual way.

The model is the following. The trion is treated as a
three-body Coulomb system. The reduced mass and the
permittivity are supposed to be isotropic and identical in
QW and in the barriers. The real potential of the QW is
replaced by an ideal one with infinite barriers. The hole is
taken to be much heavier than the electron, so the mass
ratio σ = me/mh is zero. In this case the hole occupies
the center of QW, where the adiabatic potential of the
electrons reaches a minimum [26]. A similar simplified
approach was successfully used in [27] for X− trion in
magnetic field.

The Schrödinger equation for the trion in such a case
is (hereafter we use 3D exciton units for the length and
the energy):
[−∆r1 − ∆r2 + (VC(r1, r2) + V QW (z1)

+V QW (z2)) + EX
B + ET

B − 2EQW
e

]
ΨT (r1, r2) = 0. (2)

Here r1 and r2 are three-dimensional vectors connecting
the hole with the electrons, z1 and z2 are their projections
on the growth direction. VC(r1, r2) = 2(1/R−1/r1−1/r2)
is a Coulomb potential of the system, where R = |r1− r2|
is the distance between the electrons. EX

B and ET
B are the

exciton and trion binding energies. V QW (z) is the quan-
tum well potential, it is 0 if |z| < Lz/2 and +∞ otherwise.
EQW

e is the quantization energy of the free electron in the
ground state of the quantum well:

EQW
e =

1
1 + σ

π2

Lz
2

(
if σ = 0, EQW

e =
π2

Lz
2

)
. (3)

The equation (2) is solved by a variational method, when
the energy in the ground state, calculated by a trial func-
tion with variational parameters, is minimized. We con-
struct the simplest trial function with a minimum of vari-
ational parameters, which allows to estimate the trion
binding energy for any value of quantum well width with
sufficient accuracy needed for our purposes.

Let us notice, that we can calculate full correlation en-
ergies of the exciton and the trion only. The trion binding
energy is by one order smaller, and the substraction can
considerably increase the relative uncertanties. In order to
minimize such numerical errors the exciton and trion en-
ergies should be calculated in the same manner. Thus, the
trion function should be based on the exciton function,
transforming to the latter when one of the electrons is re-
moved. The similar approach we used in [28–30] for the
analysis of the singlet and triplet states of trions in ideal
two-dimensional quantum wells and for the calculation of
the trion ground state in heterostructures with spatially
separated carriers.

The simplest trial function for the exciton with only
one variational parameter (a), which gives plausible re-
sults for the exciton binding energy in the whole range of
the quantum well widths, is:

ΨX(r) = A exp(−a r)Z0(z, Lz). (4)

Here A is a normalization factor of the corresponding wave
function. Z0(z, Lz) is the wave function of the ground state
of the quantum well. In the case of the ideal quantum well
it is:

Z0(z, Lz) =
√

2
Lz

cos
(

π
z

Lz

)
, for |z| ≤ Lz/2,

Z0(z, Lz) = 0, for |z| > Lz/2. (5)

Here r is 3D vector connecting the hole and electron, and
z is its projection on the growth direction. It is easy to
see that function (4) turns into the exact wave function of
the exciton in both limiting cases of an ideal 2D quantum
well (Lz → 0) and a 3D bulk semiconductor (Lz → ∞).

Besides simplicity, the function (4) has one additional
benefit. It is easy to show that the full kinetic energy of
the electron in the case of any arbitrary quantum well
potential V QW (z) is:

Ekin
e = 〈−∆r〉 =〈

∂

∂r
ΨX(r, z) | ∂

∂r
ΨX(r, z)

〉
+ EQW

e

−〈ΨX |V QW |ΨX

〉
= a2 + EQW

e − 〈
V QW

〉
. (6)

Consequently, the quantization energy EQW
e and the

mean value of the quantum well potential V QW in
the Schrödinger equation can be eliminated analytically,
which simplifies the calculations and let us avoid possi-
ble numerical mistakes. Thus, the binding energy of the
exciton (EX

B ) can be estimated by the formula:

EX
B = −mina(a2 − 〈VC(r)〉). (7)
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Here VC(r) = −2/r is a Coulomb potential between the
electron and the hole. It should be noted, that the param-
eters of the quantum well are included in the mean value
of the Coulomb potential through the last multiplier of
the function (4). The equations similar to (6–7) are valid
for all trial functions considered below.

The simplest trion function, based on the exciton func-
tion (4), is the 3-parameter Chandrasekhar-like one [31]:

ΨT (r1, r2) = A(exp(−a1r1 − a2r2)
+ exp(−a2r1 − a1r2)) (1 + cR)Z0(z1, Lz)Z0(z2, Lz). (8)

Here a1, a2, and c are variational parameters. In the same
way as the function (5), (8) transforms into the appropri-
ate Chandrasekhar’s function in the limiting cases of two
and three dimensions:

ΨT (r1, r2) = A(exp(−a1r1 − a2r2)
+ exp(−a2r1 − a1r2)) (1 + cR). (9)

The relative error in the trion binding energy obtained
with the function (9) is known to be less than 10% both
in the 2D and 3D cases. In intermediate quantum wells the
function (8) efficiently takes into account the influence of
the QW potential. Thus, we can expect that the estima-
tions of the binding energies even in finite quantum well
widths are also not far from the exact values.

The calculated trion binding energy versus QW width
within the described approach is shown in Figure 1b (the
dashed line pointed by σ = 0). The calculation is in sur-
prisingly good agreement with the experimental data for
wide quantum wells (Lz ≥ 2aB). Probably this means
that the influence of effects specified by particular sam-
ples is relatively small and can be neglected. The other
possible explanation is that these effects are fortuitously
cancel each other in all considered heterostructures simul-
taneously. The out-of-order point for wide ZnSe QWs is
explained by the possible presence of a build-in electric
field, which causes a spatial separation of electrons and
holes in growth direction. It has been shown [30] that the
binding energy of the trion is quite sensitive to such a
separation and rapidly decreases with electric field.

In narrow (Lz < 2aB) quantum wells the experimental
value of the binding energy sharply increases and the dis-
crepancy with the calculations becomes remarkable. Most
likely it can be concerned with the lateral localization of
the trions on in-plane potential fluctuations or quantum
well interface roughnesses [32]. Let us notice, that this
contribution turns out to be more important in real het-
erostructures than the effect of the finite barriers, which
leads to a decreasing of the binding energy and is consid-
ered below.

4 Corrections to the trion binding energy
in real heterostructures

The good agreement between the experimental data and
the general estimations obtained in the previous section

signifies that the ET
B variation caused by specific features

of real heterostructures is small for Lz ≥ 2aB. In this pa-
per we don’t intend to consider all these features, which
requires a more detailed approach. However, with the re-
sults of the previous section, we can roughly estimate the
influence of some of them. Here we consider the role of
electron-to-hole mass ratio, and the finite height of the
QW barriers.

4.1 Correction due to the mass ratio scattering

To simplify the calculations we start by analyzing the exci-
ton and then expand the obtained estimations to the trion
case. In the case of mh � me, the particle wave functions
can be separated and the adiabatic approximation is ap-
plicable. The Schrödinger equation for the hole motion in
the growth direction is (in 3D exciton units):
(
− σ

1 + σ

∂2

∂z2
+

(
V adiab

e (z) + EX
B − EQW

h

))
Zh(z) = 0.

(10)
Here Zh(z) is the wave function of the hole in growth
direction. V adiab

e (z) is a sum of the averaged Coulomb
potential of the electron and the quantum well. EQW

h is a
quantization energy of the free hole in the ground state of
the quantum well:

EQW
h =

σ

1 + σ

π2

Lz
2 . (11)

As mentioned in the previous section, the quantum well
potential is taken to be ideal, with infinite barriers. It
is easy to show that the hole with infinitely heavy mass
(σ = 0) is located in the minimum of the adiabatic poten-
tial (z = 0). The binding energy of the exciton in such
case is:

EX
B = −V adiab

e (0). (12)

As the mass ratio increases, the binding energy of the
exciton decreases because, by the definition:

〈
Zh

∣∣∣∣−
σ

1 + σ

∂2

∂z2

∣∣∣∣Zh

〉
≥ EQW

h

〈
Zh

∣∣V adiab
e (z)

∣∣Zh

〉 ≥ V adiab
e (0). (13)

Qualitatively, if the mass of the hole becomes smaller,
its localization length along z-direction increases until it
achieves the width of the QW, and then stays unchanged.
Therefore, the main factor, defining the evolution of the
exciton binding energy with the mass ratio, is the hole
localization in the growth direction due to the Coulomb
attraction of the electron. The simplest wave function,
taking this into account, is:

ΨX(r, ze, zh) = A exp(−a r)Z0(ze, Lz)Z0(zh, (bLz)).
(14)

Here r is the 3D distance between the particles, a is the
reciprocal radius of the exciton, b ∈ [0, 1] is the degree
of hole localization. The value b = 1 means the function
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Fig. 2. The exciton binding energy EX
B calculated as a function

of the quantum well width Lz for different values of the mass
ratio σ = me/mh. The curves with σ = 1 (squares) and σ =
0.01 (circles) are nearly coincide. The curve with σ = 0 (stars)
can be well approximated by the rescaled dependence with
σ = 1 (diamonds), the coefficient being

√
2.

of the hole in the growth direction is nearly the same as
that of the electron. The opposite case, b = 0, signifies
that the hole is strongly localized in the center of the well
corresponding to the case of an infinitely heavy hole.

The dependencies EX
B (Lz), calculated with the func-

tion (14) for few values of mass ratio σ = me/mh are
shown in Figure 2. Let us see, that the difference in energy
between even the extreme curves σ = 0 and σ = 1 is rather
small (<10%) for all values of Lz. Moreover, it can be no-
ticed that the curve corresponding to σ = 0.01 is closer to
the curve for σ = 1 than σ = 0. For example, the curves
σ = 0.1 and σ = 1 would not be distinguishable in the
scale of the figure. This means, that the exciton binding
energy is nearly independent on the mass ratio for σ > 0.1
and has an extremely weak dependence if σ ∈ [0.1, 0.01]. A
considerable increase of EX

B takes place only if the hole is
unrealistic heavy (σ < 0.01). Consequently, we can neglect
the variation of the binding energy of the exciton with the
mass ratio for all experimental values of the latter.

Note, the curve with σ = 0 in Figure 2 can be well
approximated by the curve with σ = 1 if the abscissa
of the latter is multiplied by a coefficient

√
2. A small

discrepancy takes place only for wide quantum wells, but
even there, it is nearly negligible. This is a consequence
of the fact, that the function (14) involves in an explicit
form the electron and hole z-coordinates (ze and zh) only
through the functions Z0. Indeed, for the case of:

Z0(z, L) =
1√√
πL

exp
(
− z2

2L2

)
, (15)

it can exactly be shown, that the binding energy of the
exciton, given by equation (7), is the same both for b ≡ 1,
L ≡ Lz and b ≡ 0, L ≡ √

2Lz:

EX
B (Lz, σ = 1) ≡ EX

B (
√

2Lz, σ = 0). (16)

The equation (16) is valid even if the exponent in the exci-
ton function (14) is replaced by any other radial function.
However, if the function Z0 differs from a Gaussian func-
tion, the equality (16) becomes not valid. Nevertheless, as
can be seen in Figure 2, it produces a good estimation
of the binding energy of the light-hole exciton (i.e. with
σ = 1) for a wide range of quantum well width values.

The results, obtained for the exciton, in some cases
can be extended to the trion. As it is for the exciton, the
binding energy of X− trion, expressed in exciton units, is
nearly independent of electron-to-hole mass ratio σ both
for an ideal 2D quantum wells and for 3D bulk semicon-
ductor [3]. The binding energy of the second electron in
the trion is much smaller (∼10 times) than that of the
first one. Therefore, in a rather crude model, the nega-
tively charged trion, containing only one heavy particle,
can be considered as an electron bound to an unperturbed
exciton via some effective central potential. The latter de-
pends on the mass ratio in such a way to keep the trion
binding energy invariable in the limiting cases of 2D QW
(Lz → 0) and bulk semiconductor (Lz → ∞).

In that way, the problem of the trion becomes very
similar to the exciton one. Consequently, one can sup-
pose that the only effect which causes an alteration of
ET

B(Lz, σ) with σ is the increase of the exciton localiza-
tion in the growth direction due to the interaction with
the additional electron. By analogy to equation (16), the
dependence of the trion binding energy with a mass ratio
σ = 1 can be obtained via rescaling the curve with σ = 0:

ET
B(Lz, 1) ≈ ET

B

(√
2Lz, 0

)
, (17)

where the latter is known from the previous section. Ob-
viously, all possible dependencies on the QW width of the
trion binding energy are confined by these two extreme
cases:

ET
B(Lz, 0) ≥ ET

B(Lz, σ) ≥ ET
B(Lz, 1). (18)

The obtained scattering of the binding energy is less than
20%, which is even smaller than the dispersion of the ex-
perimental data. Moreover, as for the exciton binding en-
ergy, the trion ET

B is expected to be about the same for
σ > 0.1, allowing to take σ = 1 for any QW with realistic
parameters. All these arguments prove the thesis, that the
binding energy of X− trion is nearly independent of the
mass ratio in most quantum well heterostructures. The
obtained estimation of ET

B(Lz, 1) is shown in Figure 3 by
solid line.

It should be noted, that such a simplified picture of
the trion is applicable in the 2D limiting case (Lz  aB)
only, where the motion in the growth direction can be
omitted, or in wide QWs (Lz � aB), where the exciton
length is small compared to well width and the exciton
can be treated as a single particle. In the intermediate case
Lz ∼ aB the movement of the electrons and holes in the
growth direction should be considered independently and
the approach might not work. However, the calculations
of the trion binding energy in 250 Å-wide GaAs QW [25]
show that there is also no strong dependence on the mass
ratio.
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Fig. 3. The trion binding energy ET
B versus the quantum well

width Lz. The solid lines are calculations for σ = 1 with infi-
nite barriers as well as with finite barriers and parameters of
GaAs (a), CdTe (b) and ZnSe (c) QWs. The dotted lines are
calculations for the same QWs adopted from [9]. The thin line
is the dependence for σ = 0 given for a reference.

4.2 Corrections caused by finite barriers

In narrow QWs the penetration of the electron and
hole wavefunctions into the barriers becomes impor-
tant and the infinite barrier approximation tends to be
inapplicable. However, in some crude form, it is possi-
ble to include this effect in our model without additional
complicated calculations. For that, the real QW with the
finite barriers should be considered as an ideal one with
infinite barriers with an effective width for electrons (Le)
and holes (Lh) so that the trion binding energy remains
unchanged. In wide quantum wells, where the penetra-
tion of the particle wavefunctions to the barriers can be
neglected, one can take Le ≈ Lh ≈ Lz. However, in
narrow QWs, these values can be considerably different
Le, Lh �= Lz. In particular, if Lz → 0, Le, Lh → ∞. We
choose the values of Le and Lh in such a way so to keep
the same mean-square deviation of the z coordinate in

the ground state of a QW. It should also be noted, that a
small relative inaccuracy in the effective well width does
not lead to a considerable change of the binding energy.
For example, if Lz is taken to be 10% larger, ET

B decreases
at most by 4%, which is quite small compared with the
uncertainty of experimental data.

In most prevalent QWs, including our case, Lh < Le,
the simplifications can be kept. Indeed, as Lh decreases,
the electron-hole interaction becomes stronger and the
trion binding energy increases. However, the limiting case
Lh → 0 is very similar to the case when σ = 0, considered
in the Section 3. Therefore, in the frames of our model,
the simple estimation can be obtained:

ET
B(Le, Le, 1) ≤ ET

B(Le, Le, σ) ≤
ET

B(Le, Lh, σ) ≤ ET
B(Le, Lh, 0) = ET

B(Le, Le, 0), (19)

where the relative difference between the boundaries does
not exceed 20% (Fig. 1b).

Thus, for a simple estimation, we can take Lh = Le and
extend the width Lz of a QW with finite barriers to the
effective width Le of an ideal QW with infinite barriers.
Consequently, the calculation of a realistic dependence of
ET

B(Lz) is reduced to the correct transformation of the
abscissa axis.

The calculated dependencies for GaAs, CdTe and ZnSe
QWs are plotted in Figure 3. In this figure we also show
the results of previous calculations [9] converted to corre-
sponding Bohr units. It is easy to see, that obtained esti-
mations are in good agreement with reference [9] for GaAs
QWs. However, some discrepancies are found for CdTe
and ZnSe QWs. Nevertheless, it is necessary to emphasize
that our simple and crude estimations allow to obtain a
much better agreement with the experimental data then
it has been achieved via the complicated calculations.

5 Conclusions

The experimental values of the trion binding energy (ET
B)

for various semiconductor quantum wells of different width
(Lz), being represented in corresponding exciton units, are
found to be well approximated by an universal function.
The theoretical estimations confirm that in a simplified
Coulomb model for wide QWs. In the case of very nar-
row QWs the calculated trion binding energy should be
corrected towards higher value owing to lateral localiza-
tion caused by inherent fluctuations of the QW width.
Following experimental and theoretical analyses, the ET

B
is nearly independent of the electron-to-hole mass ratio
at any value of quantum well width, and, for the sake of
simplicity, calculations of the ET

B can be performed with
infinite hole mass values. The trion binding energy for
QWs with finite barriers can be obtained from the univer-
sal dependence ET

B(Lz) for QWs with infinite barriers via
some transformation. We believe that our findings allow
to predict the trion binding energy in any semiconductor
QW without additional complicated calculations.
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